Radio-Labeled Compound Detection Using Isotopic Structures From Very High Resolution Mass Spectrometry

Caroline Ding, Tim Stratton, Hans Pfaffe, Hans Gresemann, Ji Ma

1Thermo Fisher Scientific, San Jose, CA, USA; 2Thermo Fisher Scientific, Bremen, Germany; 3Amgen Inc, South San Francisco, CA, USA

Overview

Purpose: Confident detection and profiling of metabolites with effective matrix background removal by employing 14C labeling and utilizing very high resolution mass spectrometry in one single workflow.

Methods: The parent compound in study is fully labeled with one 14C. Samples were prepared by incubating with RLM and NAPDH and collected at T0hr and T1hr time points. HRMS full scan followed by data dependent data were collected on the Thermo Scientific Orbitrap Fusion Trizid mass spectrometer with 240k and 120k resolution respectively. Data analysis was done within Thermo Scientific Compound Discoverer 1.0 software using one single processing workflow. The workflow employed the Pattern Tracer node to extract out chromatographic traces from both time points representing 14C containing compounds, the Expected Finder node for targeted compound detection, and the Unknown Detector node for untargeted compound detection.

Results: The Pattern Tracer node in Compound Discoverer software effectively removed matrix background and revealed 14C containing compounds. Comparison of pattern traces between the two time points helped eliminate impurity compounds. Linking compound detection with the pattern traces to get m/z, isotope pattern and spectrum were nicely done by manual peak integration on the pattern trace. The manually integrated pattern trace peaks were automatically linked to detected compounds from targeted and untargeted mechanisms.

Introduction

14C labeling is used extensively to trace the path of biochemical reactions in metabolism or biomarker studies. Although LC/HRMS techniques are commonly employed for these studies, labeled compound profiling in complex biological samples remains a challenge due to factors such as complex matrices and insufficient resolution. This study demonstrates a simple yet powerful labeled compound detection and profiling workflow using the very high resolution Orbitrap Fusion mass spectrometer and Compound Discoverer software.

Methods

Parent Compound:
The compound is Amgen proprietary.
Formula: C25H29N7O3 with one carbon replaced with 14C → 14C25H29N7O3
Monoisotopic mass: 473.24152

Sample Preparation
The sample was dosed and incubated in RLM with NADPH at a concentration of 1uM. The sample was quenched with 3 volumes of methanol containing 3% formic acid and collected at T0hr and T1hr. After centrifugation, the supernatant was subjected to LC-MS analysis.

Liquid Chromatography
Samples were chromatographically separated by a gradient using an Agilent 1290 UPLC and a CAPCELL PAK IF column (2X100mm, 2um).

Mass Spectrometry
The HRAM analysis was conducted on an Orbitrap Fusion mass spectrometer equipped with a HESI NG ion source. Full scan MS data were collected at resolving powers of 240K and data dependent at 120K.

Data Analysis
The HRAM full scan data was processed by Compound Discoverer software using a single processing workflow (Figure 1). Experimental patterns from parent compound (Figure 2) were used instead of theoretical enrichment ratios to achieve better results. Comparison of three different patterns used by the Pattern Trace node were evaluated (Figure 3) in order to select the best pattern that most effectively reduces background, in the mean time, retains relevant peak information.

FIGURE 1. Workflow tree in Compound Discoverer software which includes Pattern Tracer node to create a trace for 14C compounds, Expected Finder node to detect targeted transformation compounds and Unknown Detector node to detect untargeted compounds.
Results

Pattern Selection

Three different patterns as shown in Figure 3 were used to extract out pattern traces. The results from the Compound Discoverer Pattern Tracer node indicates the more specific the pattern is, the better it removes matrix background. (Figure 4)

FIGURE 4. Pattern traces from different custom patterns

Where are my 14C containing metabolites?
The Pattern Tracer node using pattern #3 (consisting of \( A_0, A_2, A_3 \) and \( A_4 \)) effectively removed matrix background and other interferences. Metabolites containing 14C are revealed in the pattern traces when overlaying traces from T0 hr and T1 hr time points. These metabolites are not visible in the overlaid base peak chromatograms. (Figure 5)

FIGURE 5. The top plot shows overlaid base peak chromatograms from T0hr and T1hr; the bottom plot shows overlaid pattern traces from T0hr and T1hr.

What are they?
Finding the identities of these metabolites from the pattern trace was achieved easily within Compound Discoverer software. The workflow used to process the data included Expected Finder node which looks for modification compounds and Unknown Detector node which detects compounds based on untargeted component detection. By manually integrating the selected peaks on the pattern trace, Compound Discoverer software links peaks detected by Expected Finder and Unknown Detector to the manually integrated pattern trace peaks (Figure 6). m/z compound explanations, isotope pattern fit score, fragmentation ion match score, and spectral tree information became readily available to help make the correct assignment of these compounds.
Radio-Labeled Compound Detection Using Isotopic Structures From Very High Resolution Mass Spectrometry

Methods:

Linking compound detection with the pattern traces to get m/z, isotope pattern and compound explanations, isotope pattern fit score, fragmentation ion match score, and spectral tree information became readily available within Compound Discoverer software. The workflow used to process the data included the Pattern Tracer node using pattern #3 (consisting of A0, A2, A3 and A4) effectively removed matrix background and other interferences. Metabolites containing 14C are labeled compounds based on experimental custom pattern. When it is combined in a single workflow with peak detection mechanisms, compound identification and profiling can be achieved without use of a radio detector. The pattern recognition algorithm in Compound Discoverer software is capable of utilizing very high resolution data and fine isotopic structures, which gives users greater confidence in results and helps get the answers quicker. The approach described here can be applied to any labeling studies. Future considerations include further improvement to the pattern search algorithm and developing a mechanism to detect compounds based on custom pattern.

Confident detection and profiling of metabolites with effective matrix removal is an important aspect of research. This is achieved through careful optimization during the metabolite extraction and purification process. The use of advanced mass spectrometry techniques, such as very high resolution Orbitrap mass spectrometry, enables the detection of trace level metabolites with high confidence.

The Pattern Tracer node in Compound Discoverer software effectively finds and removes the parent 14C-containing metabolite, as well as any other impurities. The use of a radio detector is not required in this process, which can save time and resources.

The results from the Compound Discoverer Pattern Tracer node indicate the more specific the pattern is, the better it removes matrix background. The pattern trace peaks (Figure 6) are linked with peaks detected by Expected Finder and Unknown Detector nodes.

In this study, all the 14C containing peaks from pattern trace were explained by the Expected Finder node. The explanations from Expected Finder provided elemental composition, transformation, formula change, mass accuracy, retention time, isotopic pattern score and FISH coverage score. These information helped quicker and more confident metabolite identification.

Conclusion

- Compound labeling combined with very high resolution LC/HRAM mass spectrometry is an effective way for confident compound detection and profiling from complex biological samples.
- Compound Discoverer software provides a suite of advanced algorithms (nodes) which enable flexible yet powerful data processing that was previously not possible.
- The Pattern Tracer node is able to effectively reduce background and extract out labeled compounds based on experimental custom pattern. When it is combined in a single workflow with peak detection mechanisms, compound identification and profiling can be achieved without use of a radio detector.
- The pattern recognition algorithm in Compound Discoverer software is capable of utilizing very high resolution data and fine isotopic structures, which gives users greater confidence in results and helps get the answers quicker.
- The approach described here can be applied to any labeling studies.
- Future considerations include further improvement to the pattern search algorithm and developing a mechanism to detect compounds based on custom pattern.

TABLE 1. 14C containing metabolites including trace level metabolites identified by Compound Discoverer software

<table>
<thead>
<tr>
<th>Formula</th>
<th>Monoisotopic mass</th>
<th>Transformation</th>
<th>Composition Change</th>
<th>RT(min)</th>
<th>Mass Accuracy (ppm)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M1</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M2</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M3</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M4</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M5</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M6</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M7</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
<tr>
<td>M8</td>
<td>C20H18N2O2</td>
<td>Oxidation</td>
<td>+21</td>
<td>15.70</td>
<td>-0.21</td>
<td>27845</td>
</tr>
</tbody>
</table>

© 2015 Thermo Fisher Scientific Inc. All rights reserved. CAPCELL PAK is a trademark of Shiseido Company, Ltd. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.